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In this paper we propose a simple naive estimator of the failure rate function.
This estimate is asymptotically unbiased but not consistent. It can be smoothed by
using any band limited window. We show that this smoothed estimate is equivalent to
estimates obtainable from the modified sample hazard function, as in Rice and
Rosenblatt (1976). We obtain the asymptotic distribution of the global deviation
of the smoothed estimate from the failure rate function, which can then be used to
construct uniform confidence bands. We illustrate the rate of convergence of our
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Abstract.

In this paper we propose a simple naive estimator of the failure rate
function. This estimate is asymptotically unbiased but not consistent.
It can be smoothed by using any band limited window. We show that this
smoothed estimate is equivalent to estimates obtainable from the modified
sample hazard function, as in Rice and Rosenblatt (1976). We obtain the
asymptotic distribution of the global deviation of the smoothed estimate
from the failure rate function, which can then be used to construct uniform
confidence bands. We illustrate the rate of convergence of our estimator

by a Monte-Carlo simulation.

1. Introduction.

The failure rate function is one of the most important parameters in
reliability theory. Several parametric and non-parametric methods for its
estimation have been proposed in the literature. Most of these methods
make specific and restrictive assumptions concerning the underlying distri-
bution.

In this paper we first propose a very intuitive (and naive) estimate
of the failure rate function, and study its properties in Section 2. Our
estimate does not require specific assumptions on the underlying distribution

and is thus non-parametric. We show that our estimate is asymptotically

unbiased, but not consistent. Purthermore, it is shown that the naive
estimate of the failure rate function at two distinct points are asymptotically

independent. A paradox concerning the estimate, reminiscent of the famous
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inter-arrival time paradox illustrated by Feller [(1966) Vol. 2, p. 11],

is shown in Section 3. The above facts limit any direct use of the naive
estimator for estimating the failure rate function.

* | In Section 4, we propose smoothed estimators obtained by averaging

the naive estimator T, by a band-limited window. We show éhat these

smoothed estimators ?; can be approximated by an appropriate Gaussian

process (Theorem 4.5), and thus obtain the asymptotic distribution of the

global deviation on any finite interval. This result can be used to construct

confidence bands for the failure rate function (Theorem 4.10). Section S

contains some results of a Monte-Carlo experiment which illustrates the
performance of our smoothed estimators.

The main steps in the proof Theorem 4.5 may be described as follows.

f ! Bickel and Rosenblatt (1973) have pioneered a new technique of proof to
approximate the normalized and centered sample density function by a sta-
tionary Gaussian process. The basic step in their proof is a use of the then |
% . 7 - owailgble result of Breiman and Brillinger approximating the normalized and

centered empirical distribution function by a Brownian bridge. Rosenblatt i

(1976) has strengthened these results by using the recent stronger results

of Komlés, Major and Tusnddy (1975). Rice and Rosenblatt (1976) have pro-

posed three estimates h(l) h(z), and h(s) of the failure rate function

UV —

which are non-parametric in nature. They have directly applied the strengthened
results of Bickel and Rosenblatt on the density function to obtain the asymp-
totic global results for h&l). They have also shown that hﬁz) is asymp-
totically close to hﬁs). By approximating the normalized and centered

sample hazard functions Hy by a Weiner process under a monotone transform

5 12 04 081
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of time, we obtain, in much the same way as Bickel and Rosenblatt, the
asymptotic global deviation results for our smoothed estimate ;n and the
Rice and Rosenblatt estimator h!(‘!'). In the course of this proof, we also

show that h!(IZ) and hl(‘s) are uniformly asymptotically equivalent to our

smoothed estimate ;n on each finite interval. Other nonparametric estimates

of the failure are studied in Shaked (1973) and Ahmad and Lin (1977).

2. The Naive Estimate and its Properties.

Let xl,xz,...,xn be independent and identically distributed random
variables with a common distribution function F(x). We shall assume that
F(0) = 0 and that F(x) possesses a density function f(x). The failure
rate function of F(x) is r(x) = f(x)/F(x) where F(x) =1 - F(x). The

hazard function H(x) is -log F(x) (defined whenever F(x) > 0) and -

f; H(x) = r(x). The purpose of this paper is to provide estimates of r(x)
and to obtain the asymptotic distribution of the global deviation of these
estimates.

The naive estimate rn(x) of the failure rate is defined as follows:

{ 1

[T 1€ e ST i i Xy oo S XX

. +l x(i) x(i-l) i = lf;’?)--’n (i)
2.1 (0 =

{0 L xZX(n),

where 0 = X s X $ v & x(n) are the order statistics of xl.xz,....

0) © (1)

B inicn: o N oot ik L
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This estimate has been used by Singpurwalla (1975) wherein he used
a time series approach for analyzing failure rates in contaminated data.
Before the time interval [x(i-l)’ X(i)) there have been (i-1) failures;
thus only (n-i+l) are still functioning in this interval, and one item is
to fail at the right end point of this interval. It is therefore intuitive
to assign a constant failure rate in this interval and to define the naive
estimator rh(x) as in (2.1). Another motivation “or (2.1) is that
the failure rate in the interval [x(i_l), x(i)) should be the reciprocal
of the 'total time on test' in that interval. The limiting distribution
of rn(x) is obtained in Theorem 2.1 below.

Let G(a; A) denote a gamma random variable with scale parameter o
and shape parameter \A; that is the density function is

uxe'x“xx'llr‘(}‘), x>0,

Notice that

E(G(a; A)) = A/a for X >0

and

E(1/G(a; 1)) = a/(A-1) for A > 1.

Let G'l(c; A) = 1/G(a; A); G'l(a; A) 1is usually referred to as the inverse

gamma random variable.
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Theorem 2.1.

& -yr(x) 2
(1) PA/r () s a) » [ e My(r(x)) dy;
0

that is

llrn(x) + G(r(x), 2) in law.
Consequently

r(® + 6, 2 in law.

(ii) Let X;sXps...,% be distinct. Then {rn(xl),rn(xz),...,rn(xk)}
are asymptotically independent.

Proof. Fix x, and let 0 < F(x) <1. Let i be the random suffix satisfying
S x<X,.
Ya-n = %< Xy

wherein, we set x(o) = 0, and x(n‘l) = o, thus i can take values 1,2,...,n.

Since i has a binomial distribution with parameters n and F(x),
(2.2) %* F(x), in probability as n + .

Conditional on i, the distribution of (x(l),...,x(i_l)) and (x(i),...,x(n))
are those of the order statistics of independent sample os size (i-1) and

(n-i+1) from the truncated distributions Fx and F~, respectively, where




F(y)/F(x) ysx
F (y) =
i 1 y > X
b
| and
0 Yy s x
F(y) =

(F(y) - F(x))/F(x) y > x.

Standard extreme value theory for extreme values shows that
i : (2.3) K= (i-l)f(x)(x-x(i_l))/F(x) + G(1, 1) in law
and

(2.9) B, = (n-i*l)f(x)(x(i) -x)/F(x) » G(1, 1) in law.

Note now that

o =i+l F(x) F(x)
: Va0 = T 5 At T B

It follows from (2.2), (2.3), (2.4) and the conditional independence of An
and Bn given i that

i;%if" G(r(x), 2), in law.

This proves part (i).
We will now briefly indicate the proof of part (ii). For simplicity,

&éssume that k=2, and that x Let 11 < 12 be the random suffixes

l < xz.
satisfying

x(il-l) s x < x(il) and x(iz-l) s'xz < x(iz).

e —



Then, conditional on il and iz,

(xm,...,x(il_l)), (x(il)"“‘x(iz-l))’ nd (Kiy yeseiXy)

become the order statistics in independent samples from three truncated
distributions. Si:ce the minimum and the maximum of a sample are asymptotically

independent, and rn(xl) depends on x(il_l) and x(il) only, and rn(x2)

depends on x( and X only, we can imitate the earlier part of our

iz-l) (iz)

proof to show that rn(xl) and rn(xz) are asymptotically independent.ll.

3. Remarks on Theorem 2.1.

The important conclusions that can be drawn from Theorem 2.1 are the
following:
(i) rn(x) is not a consistent estimate of r(x); indeed, rn(x) has

a limiting non-degenerate distribution.

(ii) while the asymptotic mean of rn(x) is r(x), we can actually

show that

1 1
Er o Em

The factor of 2 in the above result is quite surprising, and is remini-
scent of the inter-arrival paradox so well explained in Feller [(1966) Vol. 2,
p. 11]).

(iii) Since (rn(xl)....,rn(xk)) are asymptotically independent,
the graph of {rn(xJ. x20} will exhibit wild fluctuations, and will not

ha a good estimator of the failure rate.




4. A S-oothingﬁof the Naive Estimate.

The phenomenon described in the previous section is similar to the
behavior of the periodogram in estimating the spectrum of a stationary time
series. We shall therefore use the standard technique of 'smoothing' the
naive estimate with a 'window' to obtain a consistent and asymptotically
normal estimate of the failure rate.

A 11_!_11@_ is a function w(u) such that
(w1) w(u) = w(-u) 2 0, and
(W2) [ w(u)du = 1.
The window is said to be band-limited if
(W3) w(u) =0, for |u| 2 A,
and to be bounded, if
(W4) 0 <w(u) <M ey

The smoothed estimtci‘g of the failure rate depends on the window w(u)

and a sequence {bn} sati fying

(B1) bn + 0, and nbn T.

Without loss of generality, we may assume that

(B2) 0 < bn S A.
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We define the smoothed estimator ?h(x) obtained by smoothing T

with the window w and bandwidth anA as follows:

) I e | w[%ffirn(s)ds
n n

= [ w(s)r (x-b s)ds.

When w is a bandlimited window (i.e., satisfies (W3)), ?;(x) will be
used as an estimate of r(x) only for x 2 bnA, since the smoothing being

done in (4.1) does not include the whole bandwith of w when x < bnA.

Define
X i-1 X = X
= = ——1——-4' (1-1)
R (x) grn(y)dy jzl n-j+1 (“‘i’l)(x(i)'x(i-l))
for x(i-l) S X< x(i),
b U (B
nF_(x)
o3
(4.2) = j§1 AT ¢ % (X for x < Xn)
where 0 < en(x) < _1
nFn(x)

f We may now re-write ?;(x) as

- 1 X-S
r (x) = B:[ w(—sn— dR_ (x).

Y e T e T SR T e T AT
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The following lemma shows that Rh(x) and Hn(x) = -log F;(x)
(defined only for x < X(n)) are uniformly close to each other in bounded

intervals.
Lemma 4.1. Fix K < «; then

3

(4.3) sup [R (x) - Hn(x)[ $ —
xsK 2nF (K)

0<
if Fn(K) >0; i.e., if K < x(n).

Proof. We shall use the elementary inequality

2
|x + log(l-x)| < ET%:;T for 0< x<1.

Note that
() nF_(x)
(4.4)  H (%) = -log F (x) = jzl log % = - jzl log[l 2 ﬂ-J_l"T]
From equations (4.2) and (4.4), if x S K < X(n),
nF_(x)
IR (x) - H () < jzl ,n—_;*—l ’ 193[1 g n-;u} g nFnl(x)

n
= z %-0 log[l - %} +
n-nFn(x)+l

1
n?&(x)




PR

n 2
Wi oo R
n-th(K)#l 1 - E:E?;TET:T nFn(K)

1 n-nFn(K)+1 1

1
S = +
2 n-nFn(Kf#l n-nFnin nF (K)

n

1

B
& = :
nFn(K)

Rice and Rosenblatt (1976) have introduced a class of estimators

hgs){x), where

(3 1 X-S
hn (x) = 5; f "[Ti:)dnn(s)'

In Lemma 4.2 we will show that our smoothed estimator ?h(x) is uniformly

close to his)(x) on bounded intervals.

Lemma 4.2. Let w be a bounded band limited window; that is, w satisfies

(W1), (W2), (W3) and (W4). Let w also satisfy
(Ws) JIW' () |dx s ¢ < =,

where w' is the derivative of w.

Let the constants {bn} satisfy (Bl) and (B2), and let K < =,

3c

(4.5) swp [T (x) - WD) s
Osxsk M - 2nb F_(K+A)

whenever Ke¢A < X

(n)°




2 1(1]2 1 1
% 71k 1 g
n-nF_ (K)+1 b« nF._(K)

n-nFniKi#l
2 1 1 n-nFn(K)+1 3
2 n-nFn(K)+l n-nFn(KS nf;(K)
SRl -
nFn(K)

Rice and Rosenblatt (1976) have introduced a class of estimators

hﬁs)(x), where
(3) 1 x-S
hn (X) = q I W[Tn—]dHn(S).

In Lemma 4.2 we will show that our smoothed estimator ?;(x) is uniformly

close to h:s)(x) on bounded intervals.

Lemma 4.2. Let w be a bounded band limited window; that is, w satisfies

(W1), (W2), (W3) and (W4). Let w also satisfy
(Ws) JIw'(x) |dx s ¢ < =,

where w' is the derivative of w.

; Let the constants {bn} satisfy (Bl) and (B2), and let K < ». Then

3c
2nan;(K#A)

4.5 sup |70 - nV ) <
0<x<K

whenever K+A s X

(n)’
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Proof: Notice that, for x s K < x(n) - A

7,00 - iVl = 1 [ v X2 (0 - 1 (9)]]
n n

= w[’{,‘ns [Ry(s) = H_(5)]

n

n
x-bnA

<

x+b A'

’
+ iz- (f) IR (s) - Hn(s)l Iw'[t—s |ds,
b, n

(since x < K, bn < A, and x+bn S K+A)

gebe L ok ke ALY dnd (WS). .

2nb F (Ke)

Define

(4.6) B(x) = M’ B'(x) = f(x) , r(x

F(x) F01°  Fx)

and
“.n e eg) [1,- dii(s).
" !

/nb
o el Dy | "
£,(%) e (") - 1,(x), bAsxsK,
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and

/nb_
B7(x)

-— gt *
En(x) = (rn(x) - rn(x)), bnA $'x S K.

In Theorem 4.4, we will show that the process {en(x), bnA < x s K)
is uniformly close to a stationary Gaussian process. Because of Lemma 4.2,

this same result (Theorem 4.5) will also apply to the process {E;(x), bnA < x < K}.

In Theorems 4.6, and 4.7, we obtain the asymptotic distribution of

max IEn(x)| and  max IEh(x)I. In order to make these results useful
b_Asx<K bnASXSK

n
for obtaining uniform confidence bands for r(x), bnA s x < K, we will have

*
to replace rn(x) by r(x) and also replace any unknown quantities that
enter in the asymptotic theory by their estimates. This is done in two stages,

in Theorem 4.9 and Theorem 4.10. The result in Theorem 4.10 is in the most

useful form for applications. Define

z (x) = /E(Hn(x) - H(x)).

Theorem 4.3. There exists a Gaussian process {Z(x), 0 s x < K+A} with

mean function zero and E(Z(x), Z(y)) = B(x) for x < y, and such that

(4.8) sup |2 (x) - Z(x)| = Dlogn w.p. 1,
Osx<K+A " /n

wiienever x(n) >K + A, where D is a random variable with P(D < ») = 1,




- 1k =

Proof: In the rest of this paper we use the generic name D for any random
variable with P(D < =) = ],

From Komlés, Major and Tusnddy (1975), there is a Gaussian process
{Y(x), 0 < x} with mean function zero and E(Y(x)Y(y)) = F(x)(1-F(y))

for 0 < x < y, and such that

sup| A(F_(x) - F(x)) - Y(x)| = 21080
0sx

n
Since x(n) > K+ A, we have for 0 s x < K+A,

F (%)

Z (x) = -/n log —
F(x)

j R

( F (%) -F(x)]
1 F(x)

(
= -/n log|1 - Y(x) L Dlogn
| /M F(x) nF(x)

s NN +Dlogn
F(x) /n

Z(x) + plogn

/n

where Z(x) = ;;EL » 05 x < KeA, It is easy to see that
F(x)

{Z(x), 0 s x s K*A} is Gaussian with mean 0, and E(Z(x)Z(y)) = B(x) for
x S y. This completes the proof. s




- 15 =
Let ({W(s), -» < s < »} denote a Weiner process, and define

(4.9) 2(8) = [ w(B-t)dW(t), 0 <8 < =,
Then {g(8), 0 < 6 <} is a stationary Gaussian process with
E(z(6)) = 0 and E(g(6 + 8)g(8)) = [ w(s+t)w(t)dt = p(8) (say).

We now need to impose further conditions on the distribution function F:

(F1) B" (x) is bounded on 0 < x < K,
and
(F2) inf B'(x) > 0.

O<xsK+A

Theorem 4.4. Let w satisfy conditions (¥1)-(W4). Let (81), (B2), (F1)
and (F2) hold. Then there exists a stationary Gaussian process
{tn(e), As<®s K/bn} which is a restriction of {z(9)} for A <8 < K/bn’

such that

(4.10) sup |6, - ¢ (x)] = D[—JBD _, p?
b AsxsK JEF;Fn(K+A)

whenever X > K + A,

(n)

Proof: The proof of this theorem follows by going through steps which are
analogous to those used by Bickel and Rosenblatt for their Propositions 2.1

and 2.2. and using the key approximation result in Theorem 4.3. g




WEL

Theorem 4.5: Theorem 4.4 is true with £,(x) replaced by Eh(s).

Proof: Immediate from Theorem 4.4 and Lemma 4.2. R

In order to obtain the asymptotic distribution of max Ien(x)l and
b_A<x<sK
: n

max Ian(x), we will let
bnASxSK

(4.11) AW = [ wi(t)dt,
and

wl(A) +wd(-A)
A(w ¥

(4.12) Kk () =
If K (W) =0, we shall require that

&) [ (w(t))dt < e

(notice that (W6) implies (WS)), and set

(4.13) K, = [ (we) /2w,

Let

(4.149) G (2 log (K/bn))%.

TR T

Define

(4.15) 8 = c /()

and




By

(4.10) @, = () [} + rog(e K /D /c,
when w satisfies (W1)-(W5) and Kl(w) >0,
@an = A+ 1ogk,(0/m /e,

when w satisfies (W1)-(W4), (W6) and Kl(w) = 0.

Theorem 4.6. Let M = max |g (x)|. Let (W1)-(NS) hold with K (w) > 0
e e n 1
bnAsxsK

or (W1)-W(4) and (¥W6) hold with Kl(w) = 0. Let (B1l), (B2), (Fl) and (F2)
hold. Then

-z
-2e
(4.1% P{Bn(Mn - an) Sz} + e

for 0 < x < =,

Proof: Follows from Theorem 4.4 and the results on the extrema of a stationary
Gaussian process with an autocorrelation function p(6) given in Appendix A
of Bickel and Rosenblatt. ||
Theorem 4.7. Let M =  max |Eh(x)|. Theorem 4.6 holds with M, replaced

5 bnAstK
by Mn.

Proof: Immediate from Theorems 4.5 and 4.6. |

In order to obtain results which are useful for applications, we will
have to replace ra(x) in g (x) and Ek(x) by r(x). We shall now

indicate the steps which enable us to do this. We impose a further condition




AT N

<8 i~
on F which implies (F2) if F(K) > 0:
(F3) r(x) is twice continuously differentiable.

Lemma 4.8. Let (F3) hold. Let (W1), (W2) hold. Then

2

(4.19) sup |r;;(x) -r(x)] s Lb-
<x<K

0
where L is some finite number.

Proof: Now,

T - r(x) = - | w[%?—"‘-]dn(s) - r(x)
n n

= [ Ir(x + tb)) - r(x)Jw(t)de

A (tb)?
AL S R o CHO L CAE W OTT

where vy(x, t, bn) + 0 uniformly in x, t

2 A2
= b r(x) fAt w(t)de[1 + 0(1)],

and 0(1) is uniform in x.

Thus  sup lr;(x) - r(x)| < l.b: where 0 <L <w,
0<x<K

Let the constants bn satisfy the condition

S
(B3) nbn log bn + 0.
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For instance bn =nd with é—< ac< %~ will satisfy (B1) - (B3).

Theorem 4.9. Under the additional assumption (B3) holds, we may replace
‘ . s 3 —. b 1
rn(x) by r(x) in the definitions of gn(x), gn(xJ, r% and b%, and

Theorems 4.6 and 4.7 will continue to hold for the new Mn and F&.

Proof: Note that

V2 log K7s;'¢hbn (hﬁs)(x) - r(x))

Y2 log K/bn /hbn (hgsl(x) - rp(x)

+

Y2 log K/bn /hbn (r;(x) - r(x))

cnli‘(x) En(x) + O(an: log K/bn)

cniB‘(x) En(x) +0o(l).

This fact proves the theorem. I.

Notice that the denominator vB“(x) (= ’i[x)/?(x)) in the definitions
of En(xJ and E;(x) is unknown. In Theorem 4.10 we replace B“(x) by
an estimate to obtain uniform conficence bands for r(x) using our smoothed

estimator ?;(x). In an analogous manner, we can also obtain unifrom confi-

dence bands for r(x) using hgs)(x).

Theorem 4.10. Let (W1) - (WS) hold with Kl(u) >0 or let (Wl) - (W4),
(W6) hold with Kl(v) = 0. Let (Bl) - (B3), (F1), (F3) hold. Let e




¥
E ]
E ; ! - 20 -
and Bn be as defined in (4.15), (4.16) and (4.17). Then
T, )%
| (4.20) () - |—— Bi + an] < r(x)
4 nbn'Fn(x) n
T (x) |4 -z
ST (0 + [—2 f%; + “n] - a0
nann(x)

for 0 < z < =,

Proof: This theorem follows from the fact that ?n(x)/?'n(x) and h'(‘s) (x)/?n(x)

are uniformly estimates of B”(x).

Remark: To obtain a 100a% uniform confidence band for r(x) for b nA s xsK

we use the two functions

with z = -log (-(1/2) log a).

S. An _Illustrative Example With Simulations.

A smoothing window which is quite natura) “\ich also turns out to

1 be computationally simple, is the uniform -

(5.1)  w(u) = % fu] < 1.

This w satisfies (W1) - (S) with K (v) = -;. > 0.




e

A

In order to obtain an expression for ?h(x) using this window, we
: shall make use of the following elementary results.

For any x € [r-1, r]

n-k
) %-s 10g 1K
r=n-j+1 =
and
n-k+1 nek+l

r-n§j¢2 -1’ o n-j+l”

For any x 2 0, and any specified bn, let Z1 = (j-1) be the number
of observations (failures) to the left of x - bn' Z2 = (k-j+1) the number

of observations between x + bn and x - bn' and Z3 = (n-k) be the number

of observations to the right of x + bn. Also let

3 - o
il;' (“'1’1)(7(1)')‘(1-19’ for x(i_l) S x< X(i),
X
i=1,2,...,n. If W(x) = [ w(s)ds, then ]
o 3
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J % gk S
l‘n(x) = ¥ | (x)w(x s)ds = 2 W(x- X( )) [U—-— - ‘lT]
i=1 x(i-l) i=] i+l i

For w(:) given by equation (5.1), we have

%o sabean 50 N Ny o AU l.Jx =
n s
1

2an U, U,
o N Yy M
Uk Uke1
or that
4 3 P((J.)-(x-bn) Xeiy=X(i-1) x+b_-X ]
(5.3) r (x) = + L.+ + ————-(—L
n 2an le (n-1+1 Ui U

Based upon the above and the elementary results presented before, we

can write

n-j n-j+1
1 2 1 1
> 2 2L (x) S 53— i =
b Sshed 2b ael ¥
The left hand inequality is obtained by ignoring the first and the
last teras of (5.3), whereas the right hand inequality is obtained by

setting x + b (k 1) and x - bn = x(j-l) in the last and the first

terms of (5.3), respectively.




s~ s

Thus

(5.4)

S.1.

T
1 n-j¢l _ = 1 n-j+1
LN log Thar S Ta(® S 2b log ST °F
2,42 242
1 2*“s - 1 "%
B 18z < Tal® -8y

In view of the above, a computationally simple expression for ?g(x) is

Z+2
r (x) ® 53— log ——.
n an Z3

Results of a Monte-Carlo Experiment.

In this section we shall summarize our experience with the estimator

given by equation (5.4), based on a Monté Carlo experiment.

Random samples of size n (= 10, 15, 20 and 50) were generated from

an exponential distribution with scale parameter 1.0, and a Weibull distri-

bution with shape parameter 2.0, respectively. For each sample size we

obtain T, (x) using a uniform window with b_ = L, for a = 0.05, 0.10, 0.15,

0.20,

n
0.25, and 0.75. We repeat this procedure 500 times for each of the

specified 24 combinations of sample size and window width. Based upon the

results of these 500 trials, we calculate at each point x, the average,

the standard error, and the root mean square error of ?;(x). These statistics

N - Wi e
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are summarized in Table 5.1 for the exponential distribution at the point

x = 1.0, and in Table 5.2 for the Weibull distribution at the point x = 0.5.
In Figure 5.1 we show a plot of the average value of ?;(x) at each

point x, based on n = 10 and a = 0.75 for the exponential distribution,

whereas in Figure 5.2 we show a similar plot for n = 50. In Figures 5.3

and 5.4 we give plots analogous to those in Figures 5.1 and 5.2, respectively,

but for the Weibull distribution.

On the basis of the above described experiment, we can state the
following by way of conclusion:

i) For samples as small as 10 or 15, the smoothed estimator obtained
by using windows of small width is generally unbiased; the bias increases
with the width of the window. This phenomenon is especially true for points
in the middle of the range of «x.

ii) The standard error decreases with the width of the window.

iii) It appears that towards the end points of the range of x, a
smoothed estimator based on anarrower window width performs better than
one based on a wider window width.

The above comments suggest the possibility of using windows of varying
widths. A version of this strategy has been considered by Miller and

Singpurwalla (1978). For further details on the Monté-Carle experiment,

we refer the reader to Chandra (1977).
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TABLE 5.1

i i

SMOOTHED ESTIMATOR OF THE FAILURE RATE

AT THE POINT x = 1.0 FROM AN EXPONENTIAL DISTRIBUTION
sgfgéa WINDOW WIDTH MEAN STANDARD ERROR SQGRgEDMEQKOR
10 0.356 1.0649 1.0259 1.0280

1.125 0.9362 0.5126 0.5166
1.262 0.9178 0.4854 0.4923
1.416 0.8518 0.4517 0.4754
1.589 0.8240 0.4608 0.4932
1.782 0.7710 0.4396 0.4961
15 0.262 1.1780 1.1004 1.1147
1.016 1.0373 0.5153 0.5167
1.164 1.0248 0.4376 0.4383
1.332 1.0452 0.4327 0.4350
1.526 0.9704 0.3974 0.3985
1.747 0.9306 0.4019 0.4079
20 0.212 1.0978 0.8748 0.8802
0.946 1.0537 0.4501 0.4533
1.099 1.0751 0.4123 0.4191
1.276 1.0353 0.3658 0.3675
1.582 1.0376 0.3606 0. 3626
1.722 0.9966 0.3452 0.3452
50 0.106 1.0145 0.7258 0.7259
0.752 1.0237 0.2835 0.2845
0.915 1.0183 0.2599 0.2605
1.112 1.0479 0.2449 0.2495
1.353 1.0280 0.2284 0.2301
1.645 1.0251 0.1982 0.1998
P e T —————
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TABLE 5.2
i SAMPLING PROPERTIES OF SMOOTHED ESTIMATOR OF THE FAILURE
% RATE AT THE POINT x = 0.5 FROM A WEIBULL DISTRIBUTION
{
SATeE | wiNDow wipm MEAN STANDARD ERROR | ROOT MEAN f
SQUARED ERROR -
10 0.356 1.0459 0.6402 0.6419 2
1.125 1.0769 0.4614 0.4678 ;
1.262 1.0314 0.4598 0.4609 ﬁ
1.416 0.9773 0.4189 0.4195
- 1.589 0.9309 0.4644 0.4695 |
g 1.782 0.8130 0.4744 0.5099
15 0.262 1.0530 0.5870 0.5894
' 1.016 1.0746 0.4022 0.4091 |
1.164 1.0649 0.3874 0.3928 §
' 1.332 1.0995 0.3783 0.3912 §
1.526 1.0549 0.3818 0.3857 |
1.747 1.0063 0.4144 0.4144 2
20 0.212 0.9351 0.5809 0.5811
| 0.946 1.0422 0.3224 0.3251
| 1.099 1.0633 0.3245 0.3307
1.276 1.0494 0.2945 0.2987
1.582 1.0855 0.3350 0.3458
1.722 1.0816 0.3479 0.3574
50 0.106 0.9893 0.4915 0.4917
0.752 1.0270 0.2043 0.2061
0.915 1.0230 0.1997 0.2010 7
1.112 1.0154 0.1912 0.1918
1.353 1.0339 0.1958 0.1988 ?
1.645 0.0867 0.1876 0.2067
‘
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